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Viscous hydrodynamics
relativistic Navier-Stok es hydro: small corrections linear in gradients
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where � �� � u � u � � g�� , r � = � �� @�

� ; � shear and bulk viscosities, � heat conductivit y

two problems:

parabolic equations ! acausal M •uller ('76), Israel & Stewart ('79) ...

instabilities Hiscock & Lindblom, PRD31, 725 (1985) ...
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Causal viscous hydro
M •uller, Israel & Stewart...

� T �� � � �� + �� �� , � N � = � n
e+ pq�

bulk pressure � , shear stress � �� heat 
o w q� treated as independent
dynamical quantities that relax to their Navier-Stok es value on time scales
� � (e;n), � � (e;n), � q(e;n) - corresponds to keeping not only �rst but (certain)
second derivatives.

Entropy four-
o w including terms second order in dissipative 
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Require non-decrease of entropy:
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Which terms to keep?
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Potential caveat

Whereas Navier-Stok es is an expansion in �=R (keeps only �rst derivatives),
Israel-Stewart hydro is NOT a controlled approximation (retains certain
second derivatives). For example in kinetic theory, it corresponds to Grad's
14-moment approximation

f (x; p) � [1 + C�� p� p� ]e( � � p� u � )=T

while NS comes from the Chapman-Enskog expansion in small gradients

E@tf + " � ~p ~r f = C[f ] , f = f 0 + � f 1 + � 2f 2 + : : :

If relaxation e�ects important, NS and IS are di�erent

) control against a nonequilibrium theory is crucial
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Covariant transport
Boltzmann ..., Israel, Stewart, de Groot, ... Pang, Zhang, Gyulassy, DM, Vance, Csizmadia, Pratt, Cheng, Xu,
Greiner ...

Covariant, causal, nonequil. approach - formulated in terms of local rates.

� 2! 2(x) �
dNscatter ing

d4x
= � vr el

n2(x)
2

This theory has a hydrodynamic limit (i.e., it equilibrates) Boltzmann

Parameter � controls transport coe�cients and relaxation :

� � 0:8
T

� tr
� � = 1:2� tr

solvable numerically: HERE, utilize MPC algorithm DM, NPA 697 ('02)
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In transport � =s � � tr T � 1=(� T2)

e.g., for � � 50 mb (� tr � 14 mb)
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Viscous hydro vs transport
We solve the full Israel-Stewart-Muronga equations, including vorticit y terms
from kinetic theory, in a 2+1D boost-invariant scenario. Shear stress only.

Mimic a known reliable transport model:
� masslessBoltzmann particles ) � = 3P
� only 2 $ 2 processes, i.e. conserved particle number
� � = 4T=(5� tr )
� either � tr = const. = 47 mb (� tr = 14 mb)  the simplest in transport

or � tr / � 2=3 close to � =s = 1=(4 � )

Our \RHIC-lik e" initialization:
� � 0 = 0:6 fm/ c
� b = 8 fm
� T0 = 385 MeV and dN=d� jb=0 = 1000
� freeze-out at constant n = 0:365 fm� 3
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Pressure evolution in the core
Txx and Tzz averaged over the core of the system, r < 1 fm:

� =s � 1=(4� ) (� tr / � 2=3)

remarkable similarit y!
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Viscous hydro elliptic 
o w
TW O e�ects: - dissipative corrections to hydro �elds u� ; T; n

- dissipative corrections to thermal distributions f ! f 0 + � f

� =s � 1=(4� ) (� tr / � 2=3) � f = f 0

h
1 + p� p� � ��

8nT 6

i

Calculation for � tr = const. � 15 mb shows similar behaviour
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Viscous hydro vs transport v2

� excellent agreement when � = const � 47 mb
� good agreement fo � =s � 1=(4� ), i.e. � / � 2=3

� BUT results sensitive to freeze-out criterion, especially at high pT
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E�ect of freeze-out criterion
� =s � 1=(4� ) (� tr / � 2=3)

� some sensitivit y to the freeze-out criterion
� not crucial for the results
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Which terms to keep?

� Important to keep all terms!
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Conclusions
Prospects for applicabilit y of Israel-Stewart causal hydrodynamics at RHIC
look promising, based on comparisons with covariant 2 ! 2 transport in
2+1D Bjorken scenario

Dissipative e�ects change both 
o w and distributions

Dissipation reduces v2(pT ) by 20 � 30% for � =s = 1=(4� ) and conditions
expected at RHIC

Hydro dynamical results are sensitive to the freeze-out procedure

� ! being investigated
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